Editing Dalradian rocks of Jura – an excursion
Jump to navigation
Jump to search
Your changes will be displayed to readers once an authorised user accepts them. (help) |
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.
Latest revision | Your text | ||
Line 1: | Line 1: | ||
− | '''Anderton, R. 1977. 4: The Dalradian rocks of Jura. | + | '''From: Anderton, R. 1977. 4: The Dalradian rocks of Jura. Scottish Journal of Geology v 13. p135-142''' |
'''Maps''' | '''Maps''' | ||
Line 8: | Line 8: | ||
== Introduction == | == Introduction == | ||
− | |||
'''General description of guide ''' | '''General description of guide ''' | ||
The Middle Dalradian rocks of Jura are of particular interest because, as a result of their mild deformation and metamorphism (lowest greenschist facies), a large proportion clearly exhibit original sedimentary structures. Although deformational structures and minor intrusions will be referred to, the main purpose of the excursions is to demonstrate the sedimentological features of a sequence of various marine facies. For the sake of simplicity the rocks will often be referred to as muds and sands although they are now mainly slates, phyllites and very hard quartzites. Exposure is good throughout the area, especially in the wave-cut benches of raised beaches from which many of the localities are described. | The Middle Dalradian rocks of Jura are of particular interest because, as a result of their mild deformation and metamorphism (lowest greenschist facies), a large proportion clearly exhibit original sedimentary structures. Although deformational structures and minor intrusions will be referred to, the main purpose of the excursions is to demonstrate the sedimentological features of a sequence of various marine facies. For the sake of simplicity the rocks will often be referred to as muds and sands although they are now mainly slates, phyllites and very hard quartzites. Exposure is good throughout the area, especially in the wave-cut benches of raised beaches from which many of the localities are described. | ||
Line 17: | Line 16: | ||
=== General geology === | === General geology === | ||
− | |||
There are no really useful publications which describe the geology of the area. Most of the early work was stratigraphical and Bailey's (1916) summary and map are still the most authoritative. The Geological Survey memoirs (Peach et at 1909, 1911) include much lithological detail and descriptions of the Caledonian and post-Caledonian dykes and sills. anderton (1976) has recently discussed the depositional environments of the Jura Quartzite.The stratigraphical relationships of the formations are shown in the Figure. The Jura Quartzite is interpreted as having been deposited on a tidal-current dominated shallow marine shelf. As one follows the predominant palaeocurrent direction towards the NNE. the sediments change from almost entirely cross-bedded sands, deposited from migrating mega-ripples or sand-waves, to include an increasing proportion of laminated and rippled sands and silts. This is very similar to the change observed down the bedload sediment transport path in the present day Celtic Sea (Belderson and Stride 1966). There is no obvious relationship between such tidal palaeocurrents and the shoreline, but they may be very approximately parallel. | There are no really useful publications which describe the geology of the area. Most of the early work was stratigraphical and Bailey's (1916) summary and map are still the most authoritative. The Geological Survey memoirs (Peach et at 1909, 1911) include much lithological detail and descriptions of the Caledonian and post-Caledonian dykes and sills. anderton (1976) has recently discussed the depositional environments of the Jura Quartzite.The stratigraphical relationships of the formations are shown in the Figure. The Jura Quartzite is interpreted as having been deposited on a tidal-current dominated shallow marine shelf. As one follows the predominant palaeocurrent direction towards the NNE. the sediments change from almost entirely cross-bedded sands, deposited from migrating mega-ripples or sand-waves, to include an increasing proportion of laminated and rippled sands and silts. This is very similar to the change observed down the bedload sediment transport path in the present day Celtic Sea (Belderson and Stride 1966). There is no obvious relationship between such tidal palaeocurrents and the shoreline, but they may be very approximately parallel. | ||
Line 49: | Line 47: | ||
=== Locality 4: Glentrosdale Bay === | === Locality 4: Glentrosdale Bay === | ||
− | |||
Sedimentary structures in the Jura Quartzite. | Sedimentary structures in the Jura Quartzite. | ||
Line 86: | Line 83: | ||
Walker, R. G. 1966. Shale Grit and Grindslow Shales: transition from turbidites to shallow water sediments in the Upper Carboniferous of Northern England. J. Sedim. Petrol. 36, 90-114. | Walker, R. G. 1966. Shale Grit and Grindslow Shales: transition from turbidites to shallow water sediments in the Upper Carboniferous of Northern England. J. Sedim. Petrol. 36, 90-114. | ||
− | + | [[Category: 4. Grampian Highlands]]]] | |
− | |||
− | [[Category: 4. Grampian Highlands]] |