Editing Early Permian environment and lithostratigraphy, Northern England

Jump to navigation Jump to search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 1: Line 1:
{{NERG}}
+
'''From: Stone, P, Millward, D, Young, B, Merritt, J W, Clarke, S M, McCormac, M and Lawrence, D J D. 2010. [[British regional geology: Northern England|British regional geology: Northern England]]. Fifth edition. Keyworth, Nottingham: British Geological Survey.'''
 +
 
 +
 
 
__FORCETOC__
 
__FORCETOC__
 
== Introduction ==
 
== Introduction ==
Line 14: Line 16:
 
To the west of the ‘proto-Pennines’, east–west orientated extension reactivated large fault structures in the underlying Carboniferous strata, generating a series of isolated rift basins that developed as major centres of Permian deposition. Thick aeolian dune fields (draa) developed within these basins, which were bounded by a low-lying, gently undulating topography cut across Carboniferous rocks. Thin deposits of aeolian sand accumulated in small hollows and depressions in this topography, some of which may have been karstic features in Dinantian limestones. The depressions were separated by broad, bare, rocky, desert surfaces (hamarda), probably with scattered stones coated in desert varnish. Overlooking these low-lying areas were the uplands of southern Scotland, the Lake District and the Isle of Man. There, fluvial sandstones and breccias were deposited in canyons, whilst large alluvial outwash fans and flash-flood deposits spread out around the hills. The palaeogeography is summarised in [[Media:P916085.jpg|(P916085)]]a.
 
To the west of the ‘proto-Pennines’, east–west orientated extension reactivated large fault structures in the underlying Carboniferous strata, generating a series of isolated rift basins that developed as major centres of Permian deposition. Thick aeolian dune fields (draa) developed within these basins, which were bounded by a low-lying, gently undulating topography cut across Carboniferous rocks. Thin deposits of aeolian sand accumulated in small hollows and depressions in this topography, some of which may have been karstic features in Dinantian limestones. The depressions were separated by broad, bare, rocky, desert surfaces (hamarda), probably with scattered stones coated in desert varnish. Overlooking these low-lying areas were the uplands of southern Scotland, the Lake District and the Isle of Man. There, fluvial sandstones and breccias were deposited in canyons, whilst large alluvial outwash fans and flash-flood deposits spread out around the hills. The palaeogeography is summarised in [[Media:P916085.jpg|(P916085)]]a.
  
The Penrith Sandstone Formation [[Media:P916115.jpg|(P916115)]] contains the oldest Permian strata preserved in north-western England, and is of Guadalupian to Lopingian age. The base of the formation is characterised by alluvial fan and flash-flood breccias that collectively form the Brockram facies [[Media:P916086.jpg|(P916086)]]a. These deposits comprise coarse, poorly bedded and poorly to moderately sorted breccias with angular clasts of granite, local Carboniferous and Lower Palaeozoic lithologies, and volcanic rocks from the Lake District. Where the Brockram facies is particularly thin and contains clasts coated in desert varnish, it may represent hamarda rather than flash-flood and alluvial fan deposits. The Brockram is only locally present at outcrop, but deposits up to 150 m thick are exposed in quarries in the Brough district, whilst substantial thicknesses have also been recorded in west and south Cumbria. Boreholes in the Irish Sea and at the north-east end of the Isle of Man have proved basal breccias to the Penrith Sandstone’s equivalent there, the Collyhurst Sandstone Formation, that are thought to be lateral equivalents of the mainland Brockram [[Media:P916115.jpg|(P916115)]].
+
The Penrith Sandstone Formation [[Media:P916115.jpg|(P916115)]] contains the oldest Permian strata preserved in north-western England, and is of Guadalupian to Lopingian age. The base of the formation is characterised by alluvial fan and flash-flood breccias that collectively form the Brockram facies [[Media:P916086.jpg|(P916086)]]a. These deposits comprise coarse, poorly bedded and poorly to moderately sorted breccias with angular clasts of granite, local Carboniferous and Lower Palaeozoic lithologies, and volcanic rocks from the Lake District. Where the Brockram facies is particularly thin and contains clasts coated in desert varnish, it may represent hamarda rather than flash-flood and alluvial fan deposits. The Brockram is only locally present at outcrop, but deposits up to 150 m thick are exposed in quarries in the Brough district, whilst substantial thicknesses have also been recorded in west and south Cumbria. Boreholes in the Irish Sea and at the north-east end of the Isle of Man have proved basal breccias to the Penrith Sandstone’s equivalent there, the Collyhurst Sandstone Formation, that are thought to be lateral equivalents of the mainland Brockram [[Media:P916115.jpg|(P916115)]].
  
 
Overlying and in places interfingering with the Brockram are the aeolian sandstones that comprise most of the Penrith Sandstone Formation. The deposition of these strata was strongly influenced by variations in pre-Permian topography with the major depositional centres being the intermontane basins of the East Irish Sea and the Vale of Eden. In the Vale of Eden, large sand dunes developed and are preserved at outcrop as red, fine- to coarse-grained, well-sorted, aeolian sandstone with strong cross-bedding. The orientation of the forsets implies a palaeowind direction from the east or south-east. Within these dominantly aeolian deposits are sporadic interbeds of fluvial sandstone that are thought to represent deposition in ephemeral wadis that cut the dune fields, and irregular units of bedded sandstone with sub-angular debris that are thought to represent deposition in interdune ponds.
 
Overlying and in places interfingering with the Brockram are the aeolian sandstones that comprise most of the Penrith Sandstone Formation. The deposition of these strata was strongly influenced by variations in pre-Permian topography with the major depositional centres being the intermontane basins of the East Irish Sea and the Vale of Eden. In the Vale of Eden, large sand dunes developed and are preserved at outcrop as red, fine- to coarse-grained, well-sorted, aeolian sandstone with strong cross-bedding. The orientation of the forsets implies a palaeowind direction from the east or south-east. Within these dominantly aeolian deposits are sporadic interbeds of fluvial sandstone that are thought to represent deposition in ephemeral wadis that cut the dune fields, and irregular units of bedded sandstone with sub-angular debris that are thought to represent deposition in interdune ponds.
Line 27: Line 29:
 
The Yellow Sands Formation consists of weakly consolidated sand, sandstone and breccia. In the north-west of the outcrop most of the formation consists of unconsolidated sand but, to the south-east, breccia and sandstone dominate, with only the upper part of the formation consisting of sand. At outcrop, the Yellow Sands Formation consists entirely of weakly consolidated yellow sand (from which it derives its name) whereas the breccia and sandstone components do not form significant outcrops and are known mainly from boreholes and shafts. Quarrying activities at Eldon Hill, Middridge and East Thickley, all near Bishop Auckland in County Durham, formerly exposed the Permian Unconformity and the basal breccias and sandstone [[Media:P221601.jpg|(P221601)]], but these quarries are now backfilled and the exposures are obscured.
 
The Yellow Sands Formation consists of weakly consolidated sand, sandstone and breccia. In the north-west of the outcrop most of the formation consists of unconsolidated sand but, to the south-east, breccia and sandstone dominate, with only the upper part of the formation consisting of sand. At outcrop, the Yellow Sands Formation consists entirely of weakly consolidated yellow sand (from which it derives its name) whereas the breccia and sandstone components do not form significant outcrops and are known mainly from boreholes and shafts. Quarrying activities at Eldon Hill, Middridge and East Thickley, all near Bishop Auckland in County Durham, formerly exposed the Permian Unconformity and the basal breccias and sandstone [[Media:P221601.jpg|(P221601)]], but these quarries are now backfilled and the exposures are obscured.
  
The dominant lithology in the Yellow Sands Formation is an unconsolidated, coarse-grained, siliceous sand containing much pyrite. The yellow colour results from the oxidisation of the pyrite to limonite. In the subsurface, below the oxidised zone, the pyrite is fresh and accordingly the sands are predominantly grey in colour. The individual sand grains are frosted and well rounded and have the classic ‘millet seed’ appearance characteristic of aeolian transport. The thickness of the unconsolidated sand is highly variable. In general terms it appears to form up to eight east-north-east-trending discontinuous belts of aeolian dunes, each 1.5–3.5 km wide and separated by corridors averaging 1 km wide in which the sand is thin or absent. This pattern is modified locally such that in places the cross-bedded dune ridges have thick sand deposits between them [[Media:P548172.jpg|(P548172)]]. The primary shape of many of the ridges has been considerably modified by subsequent late Permian events.
+
The dominant lithology in the Yellow Sands Formation is an unconsolidated, coarse-grained, siliceous sand containing much pyrite. The yellow colour results from the oxidisation of the pyrite to limonite. In the subsurface, below the oxidised zone, the pyrite is fresh and accordingly the sands are predominantly grey in colour. The individual sand grains are frosted and well rounded and have the classic ‘millet seed’ appearance characteristic of aeolian transport. The thickness of the unconsolidated sand is highly variable. In general terms it appears to form up to eight east-north-east-trending discontinuous belts of aeolian dunes, each 1.5–3.5 km wide and separated by corridors averaging 1 km wide in which the sand is thin or absent. This pattern is modified locally such that in places the cross-bedded dune ridges have thick sand deposits between them [[Media:P548172.jpg|(P548172)]]. The primary shape of many of the ridges has been considerably modified by subsequent late Permian events.
  
The breccias contain rock fragments up to 8 cm long embedded either in a matrix of smaller rock fragments and sand, or entirely in sandstone. The fragments are angular to subangular and consist predominantly of locally derived Carboniferous limestone with some fragments of mudstone and sandstone derived from the Carboniferous Coal Measures. Bluish-grey, hard, well-cemented sandstone is often interbedded with the breccias and contains small pebbles of quartz or, more commonly, fragments of sandstone, siltstone and mudstone. The thickness of the breccia–sandstone association in boreholes is commonly about 60 cm but it is highly variable and can range from as little as a few centimetres up to 15 m. Where the breccia–sandstone association is thin, many of the rock fragments are coated in desert varnish. It is probable that the association was deposited in an arid environment on a desert rock pavement and was partially redistributed by ephemeral sheet floods. Some watercourses may have cut into the Permian Unconformity, as suggested by an exposure on the Durham motorway (A1M) at Cleasby, where 1m of breccia is exposed filling a channel-like hollow in the unconformity surface. Sporadic bands of dolomitic mudstone noted within the breccias in some boreholes probably indicate deposition in temporary ponds associated with flooding events.
+
The breccias contain rock fragments up to 8 cm long embedded either in a matrix of smaller rock fragments and sand, or entirely in sandstone. The fragments are angular to subangular and consist predominantly of locally derived Carboniferous limestone with some fragments of mudstone and sandstone derived from the Carboniferous Coal Measures. Bluish-grey, hard, well-cemented sandstone is often interbedded with the breccias and contains small pebbles of quartz or, more commonly, fragments of sandstone, siltstone and mudstone. The thickness of the breccia–sandstone association in boreholes is commonly about 60 cm but it is highly variable and can range from as little as a few centimetres up to 15 m. Where the breccia–sandstone association is thin, many of the rock fragments are coated in desert varnish. It is probable that the association was deposited in an arid environment on a desert rock pavement and was partially redistributed by ephemeral sheet floods. Some watercourses may have cut into the Permian Unconformity, as suggested by an exposure on the Durham motorway (A1M) at Cleasby, where 1m of breccia is exposed filling a channel-like hollow in the unconformity surface. Sporadic bands of dolomitic mudstone noted within the breccias in some boreholes probably indicate deposition in temporary ponds associated with flooding events.
  
 
== Bibliography ==
 
== Bibliography ==

Please note that all contributions to Earthwise may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Earthwise:Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

  [] · [[]] · [[|]] · {{}} · · “” ‘’ «» ‹› „“ ‚‘ · ~ | °   · ± × ÷ ² ³ ½ · §
[[Category:]] · [[:File:]] · <code></code> · <syntaxhighlight></syntaxhighlight> · <includeonly></includeonly> · <noinclude></noinclude> · #REDIRECT[[]] · <translate></translate> · <languages/> · ==References== · {{reflist}} · ==Footnote== · {{reflist|group=note}} · <ref group=note> · __notoc__ · {{DEFAULTSORT:}} <div class="someclass noprint"></div> {{clear}} <br>

Template used on this page: