Editing Geological factors influencing gas production in the Tyne field (Block 44/18a), southern North Sea, and their impact on future infill well planning

Jump to navigation Jump to search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 72: Line 72:
 
Faults within the Tyne North and Northwest blocks dip northwards. The southern boundary of these blocks is marked by a major east–west trending fault complex of late Carboniferous age. The Tyne South and Tyne West fault blocks dip southwards away from this complex. They are separated by a northwest– southeast orientated graben of younger, Mesozoic age ([[:File:YGS_CHR_12_GEOL_FIG_01.jpg|Figure 1]]).
 
Faults within the Tyne North and Northwest blocks dip northwards. The southern boundary of these blocks is marked by a major east–west trending fault complex of late Carboniferous age. The Tyne South and Tyne West fault blocks dip southwards away from this complex. They are separated by a northwest– southeast orientated graben of younger, Mesozoic age ([[:File:YGS_CHR_12_GEOL_FIG_01.jpg|Figure 1]]).
  
According to Knipe et al. (1998), an important period of Late Carboniferous extension preceded the end-Variscan compression. The west-southwest–east-northeast faults, showing only Carboniferous movement, date from this period. Many faults that show evidence for post-Carboniferous reactivation were also initiated during this time. Although most of this extension postdated deposition of the Lower Ketch, careful analysis of the 3-D seismic data shows there was also some early syn-sedimentary movement ([[:File:YGS_CHR_12_GEOL_FIG_05.jpg|Figure 5]], [[:File:YGS_CHR_12_GEOL_FIG_06.jpg|Figure 6]]). The result was a thickening of the Lower Ketch into hanging-wall sections of active faults and erosion of section at the T-Horizon near the fault-block crests, causing local unconformities. Seismic mapping suggests that the thickness of the Lower Ketch ranges from about 600ft to just under 300ft. Most of this is attributed to the impact of synsedimentary faulting.
+
According to Knipe et al. (1998), an important period of Late Carboniferous extension preceded the end-Variscan compression. The west-southwest–east-northeast faults, showing only Carboniferous movement, date from this period. Many faults that show evidence for post-Carboniferous reactivation were also initiated during this time. Although most of this extension postdated deposition of the Lower Ketch, careful analysis of the 3-D seismic data shows there was also some early syn-sedimentary movement ([[:File:YGS_CHR_12_GEOL_FIG_05.jpg|Figure 5]], [[:File:YGS_CHR_12_GEOL_FIG_06.jpg|[[:File:YGS_CHR_12_GEOL_FIG_05.jpg|Figure 5]]6]]). The result was a thickening of the Lower Ketch into hanging-wall sections of active faults and erosion of section at the T-Horizon near the fault-block crests, causing local unconformities. Seismic mapping suggests that the thickness of the Lower Ketch ranges from about 600ft to just under 300ft. Most of this is attributed to the impact of synsedimentary faulting.
  
 
As pointed out by O’Mara et al. (1999), the trapping mechanism in the Tyne field is unusual in that there is no structural closure at the base Permian level. The traps in all of the accumulations are complex and rely on a combination of topseal provided by the unconformably overlying Permian Silverpit Formation and the shale-prone Upper Ketch on the dip slope.
 
As pointed out by O’Mara et al. (1999), the trapping mechanism in the Tyne field is unusual in that there is no structural closure at the base Permian level. The traps in all of the accumulations are complex and rely on a combination of topseal provided by the unconformably overlying Permian Silverpit Formation and the shale-prone Upper Ketch on the dip slope.

Please note that all contributions to Earthwise may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Earthwise:Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

  [] · [[]] · [[|]] · {{}} · · “” ‘’ «» ‹› „“ ‚‘ · ~ | °   · ± × ÷ ² ³ ½ · §
[[Category:]] · [[:File:]] · <code></code> · <syntaxhighlight></syntaxhighlight> · <includeonly></includeonly> · <noinclude></noinclude> · #REDIRECT[[]] · <translate></translate> · <languages/> · ==References== · {{reflist}} · ==Footnote== · {{reflist|group=note}} · <ref group=note> · __notoc__ · {{DEFAULTSORT:}} <div class="someclass noprint"></div> {{clear}} <br>

Templates used on this page: