Editing Hydrogeology of Niger

Jump to navigation Jump to search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 1: Line 1:
 
[[Africa Groundwater Atlas Home | Africa Groundwater Atlas]] >> [[Hydrogeology by country | Hydrogeology by country]]  >> Hydrogeology of Niger
 
[[Africa Groundwater Atlas Home | Africa Groundwater Atlas]] >> [[Hydrogeology by country | Hydrogeology by country]]  >> Hydrogeology of Niger
 +
 +
'''The information on this page was taken from various sources, listed in the References section, below. If you have more information on the hydrogeology of Niger, please get in touch!'''
  
  
Line 334: Line 336:
 
==Groundwater Status==
 
==Groundwater Status==
  
Niger has vast quantities of groundwater stored in deep sedimentary aquifers, much of which is likely to be ancient 'fossil' water that is not actively recharged because modern rainfall is so low. Shallower aquifers, particularly alluvial aquifers in valleys and local weathered (regolith) aquifers in basement, store much smaller amounts of groundwater, but are recharged annually by seasonal rainfall, on which they rely very heavily. In 1995, OSS estimated that Niger used less than 10% of its total groundwater resources; by 2003, this was estimated at 20% (Conseil National de l'Environnement Pour un Developpement Durable).  
+
Niger has vast quantities of stored groundwater in deep sedimentary aquifers, much of which is likely to be 'fossil' water that is not actively recharged, because of low rainfall. Shallower aquifers, particularly alluvial aquifers in valleys and local weathered (regolith) aquifers in basement, store much smaller amounts of groundwater, but are recharged annually by seasonal rainfall, on which they rely very heavily. In 1995, OSS estimated that Niger used less than 10% of its total groundwater resources; by 2003, this was estimated at 20% (Conseil National de l'Environnement Pour un Developpement Durable).  
  
 
Some of Niger's groundwater is highly mineralised, related to high evaporation (in shallow aquifers) and/or to age and dissolution of aquifer minerals; however, this is not recognised as a widespread problem (UNICEF 2010). Borehole databases indicate that fresh groundwater occurs across the southern region; there is not enough information for other areas to assess the situation (UNICEF 2010). There are known local problems of bacterial and nitrate contamination, related to human and animal waste disposal (UNICEF 2010). High nitrate concentrations in groundwater also occur naturally in some areas, such as widely in the Continental Terminal aquifer in the Iullemeden Basin, relating to a nitrogen flux from intensive land clearance in this area over decades (Favreau et al. 2003).
 
Some of Niger's groundwater is highly mineralised, related to high evaporation (in shallow aquifers) and/or to age and dissolution of aquifer minerals; however, this is not recognised as a widespread problem (UNICEF 2010). Borehole databases indicate that fresh groundwater occurs across the southern region; there is not enough information for other areas to assess the situation (UNICEF 2010). There are known local problems of bacterial and nitrate contamination, related to human and animal waste disposal (UNICEF 2010). High nitrate concentrations in groundwater also occur naturally in some areas, such as widely in the Continental Terminal aquifer in the Iullemeden Basin, relating to a nitrogen flux from intensive land clearance in this area over decades (Favreau et al. 2003).

Please note that all contributions to Earthwise may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Earthwise:Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

  [] · [[]] · [[|]] · {{}} · · “” ‘’ «» ‹› „“ ‚‘ · ~ | °   · ± × ÷ ² ³ ½ · §
[[Category:]] · [[:File:]] · <code></code> · <syntaxhighlight></syntaxhighlight> · <includeonly></includeonly> · <noinclude></noinclude> · #REDIRECT[[]] · <translate></translate> · <languages/> · ==References== · {{reflist}} · ==Footnote== · {{reflist|group=note}} · <ref group=note> · __notoc__ · {{DEFAULTSORT:}} <div class="someclass noprint"></div> {{clear}} <br>