Editing Jurassic, Tertiary and Quaternary around Great Ayton and Roseberry Topping, Cleveland Hills - an excursion

Jump to navigation Jump to search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 30: Line 30:
 
Evidence for glaciation in the region takes the form of '''tills''', '''glaciofluvial '''sands and gravels and '''lacustrine''' silts and clays on the lower slopes and in the valley bottoms. Additionally, glacial '''meltwater channels''', located in anomalous positions without a drainage catchment, have been recognized and used as evidence to determine the slope of the glacier surface and the pattern of ice wastage. This evidence is attributed to the Dimlington '''Stadial''' of the Late Devensian Glaciation, when glaciers extended southward in eastern England to the region of the Wash, reaching their maximal extent about 17&nbsp;000 <sup>14</sup>C yrs BP. Ice probably melted from the region sometime between about 16–15&nbsp;000 <sup>14</sup>C yrs BP (Catt in Ehlers & Rose, 1991). This ice failed to cover the higher parts of the Cleveland Hills, but was responsible for infilling the valley bottoms, reducing the relative relief of the region and significantly changing the valley bottom topography, producing many buried valleys throughout northeast England. Although not glacierized during the Dimlington Stadial it is probable that the higher slopes were overridden by ice at some time earlier in the Quaternary, as resistant '''erratic''' pebbles have been recorded from the plateau surfaces of the Cleveland Hills. There is, as yet, no evidence to estimate the age of this earlier glaciation(s).
 
Evidence for glaciation in the region takes the form of '''tills''', '''glaciofluvial '''sands and gravels and '''lacustrine''' silts and clays on the lower slopes and in the valley bottoms. Additionally, glacial '''meltwater channels''', located in anomalous positions without a drainage catchment, have been recognized and used as evidence to determine the slope of the glacier surface and the pattern of ice wastage. This evidence is attributed to the Dimlington '''Stadial''' of the Late Devensian Glaciation, when glaciers extended southward in eastern England to the region of the Wash, reaching their maximal extent about 17&nbsp;000 <sup>14</sup>C yrs BP. Ice probably melted from the region sometime between about 16–15&nbsp;000 <sup>14</sup>C yrs BP (Catt in Ehlers & Rose, 1991). This ice failed to cover the higher parts of the Cleveland Hills, but was responsible for infilling the valley bottoms, reducing the relative relief of the region and significantly changing the valley bottom topography, producing many buried valleys throughout northeast England. Although not glacierized during the Dimlington Stadial it is probable that the higher slopes were overridden by ice at some time earlier in the Quaternary, as resistant '''erratic''' pebbles have been recorded from the plateau surfaces of the Cleveland Hills. There is, as yet, no evidence to estimate the age of this earlier glaciation(s).
  
People have had a long-term influence on the landscape in this part of the Cleveland Hills. Mesolithic, Neolithic, Bronze and Iron Age peoples settled the region, helping to create the present-day 'grouse moor' landscape of the upland areas by forest clearance. Their presence is evidenced by well-defined ridge routes as well as numerous defensive sites, enclosures, field patterns, clearance cairns and burial tumuli. Monastic sheep farming created grange communities with associated field holdings, and medival iron smelting using local iron ores also added to the wealth of the Abbey or Priory. Sedimentary iron ore extraction (from the Cleveland Ironstone Formation) in the 19th century, by opencast and deep mine methods, has left a visible legacy of industrial archaeology. Large-scale Alum Shale workings have also left their mark on the Cleveland Hills landscape. Jet mining from the Upper Lias Shales (Mulgrave Shale Member) in the 19th century was more localized but the extraction bell pits can still be seen.
+
People have had a long-term influence on the landscape in this part of the Cleveland Hills. Mesolithic, Neolithic, Bronze and Iron Age peoples settled the region, helping to create the present-day 'grouse moor' landscape of the upland areas by forest clearance. Their presence is evidenced by well-defined ridge routes as well as numerous defensive sites, enclosures, field patterns, clearance cairns and burial tumuli. Monastic sheep farming created grange communities with associated field holdings, and medival iron smelting using local iron ores also added to the wealth of the Abbey or Priory. Sedimentary iron ore extraction (from the Cleveland Ironstone Formation) in the 19th century, by opencast and deep mine methods, has left a visible legacy of industrial archaeology. Large-scale Alum Shale workings have also left their mark on the Cleveland Hills landscape. Jet mining from the Upper Lias Shales (Mulgrave Shale Member) in the i gth century was more localized but the extraction bell pits can still be seen.
  
 
== Excursion details ==
 
== Excursion details ==
Line 36: Line 36:
 
From the Tourist Information Centre, Great Ayton [NZ 563 107], walk northwards along Newton Road. Note that the older properties in the village are built of a fine-quality reddish-brown sandstone with characteristic worked chevron tooling. One of the sources for this Middle Jurassic building stone can be visited at Locality 8. Also note the Tile Yard Pub, an indication that pan tiles were locally manufactured from glacial lake clays.
 
From the Tourist Information Centre, Great Ayton [NZ 563 107], walk northwards along Newton Road. Note that the older properties in the village are built of a fine-quality reddish-brown sandstone with characteristic worked chevron tooling. One of the sources for this Middle Jurassic building stone can be visited at Locality 8. Also note the Tile Yard Pub, an indication that pan tiles were locally manufactured from glacial lake clays.
  
=== Locality 1 [NZ 563 114], at the junction with the A173 ===
+
=== Locality 1 [NZ 563 114], at the junction with the A173. ===
  
Look north to the very evident Langbaugh Ridge, the core of which is the Tertiary Cleveland Dyke. Differential erosion of the softer Lower Liassic sediments from around this dyke has resulted in this prominent feature which stretches west-northwest into the Tees Basin. Tills mask the bedrock on either side of the ridge. Langbaugh Ridge has been extensively quarried for roadstone [NZ 555 123]–[NZ 564 120]. Continue up the A173 to the summit of the ridge and take the bridle road east-southeast towards Cliff Ridge Wood and Roseberry Topping.
+
Look north to the very evident Langbaugh Ridge, the core of which is the Tertiary Cleveland Dyke. Differential erosion of the softer Lower Liassic sediments from around this dyke has resulted in this prominent feature which stretches west-northwest into the Tees Basin. Tills mask the bedrock on either side of the ridge. Langbaugh Ridge has been extensively quarried for roadstone [NZ 555 123]–[NZ 564 120].
 +
 
 +
Continue up the A173 to the summit of the ridge and take the bridle road east-southeast towards Cliff Ridge Wood and Roseberry Topping.
  
 
=== Locality 2 [NZ 566 119] ===
 
=== Locality 2 [NZ 566 119] ===

Please note that all contributions to Earthwise may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Earthwise:Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)

  [] · [[]] · [[|]] · {{}} · · “” ‘’ «» ‹› „“ ‚‘ · ~ | ° &nbsp; · ± × ÷ ² ³ ½ · §
[[Category:]] · [[:File:]] · <code></code> · <syntaxhighlight></syntaxhighlight> · <includeonly></includeonly> · <noinclude></noinclude> · #REDIRECT[[]] · <translate></translate> · <languages/> · ==References== · {{reflist}} · ==Footnote== · {{reflist|group=note}} · <ref group=note> · __notoc__ · {{DEFAULTSORT:}} <div class="someclass noprint"></div> {{clear}} <br>