Minor intrusions - geochemistry - St. Kilda: an illustrated account of the geology: Difference between revisions

From MediaWiki
Jump to navigation Jump to search
(Created page with "{{StKilda}} File:P991853.jpg|thumbnail|Figure 28 TiO2–K2O–P2O5 diagram showing range in K2O values at relatively constant Ti:P ratios. Broken line denotes closed system...")
 
No edit summary
Line 13: Line 13:


Analyses of both basic and acid components of two composite dykes are given in columns 13–16 of [[:File:P991886.jpg|(Table 29)]]. In both intrusions the outer part is basaltic and the inner is granitic. Both granitic components differ petrographically but have a similar SiO<sub>2</sub> content of 72%, which, along' with Ca, Mg and Fe values, lies between those for the Glen Bay Granite (69%) and the Conachair Granite (76%).
Analyses of both basic and acid components of two composite dykes are given in columns 13–16 of [[:File:P991886.jpg|(Table 29)]]. In both intrusions the outer part is basaltic and the inner is granitic. Both granitic components differ petrographically but have a similar SiO<sub>2</sub> content of 72%, which, along' with Ca, Mg and Fe values, lies between those for the Glen Bay Granite (69%) and the Conachair Granite (76%).
{| class="wikitable"
|-
|  |
|  | = Analysed rocks =
|-
|  | 1.
|  | Basalt inclined sheet, cutting gabbro about 150 m southeast of Bioda Mor, Dun [NM 1060 9728].
|-
|  | 2.
|  | Basalt inclined sheet, cutting gabbro, upper one of three, An Fhaing, Dun [NM 1005 9758].
|-
|  | 3.
|  | Basalt inclined sheet cutting Mullach Sgar Complex, Na h-Eagan, Hirta [NM 0940 9840].
|-
|  | 4.
|  | Basalt inclined sheet cutting Mullach Sgar Complex, Na h-Eagan, Hirta [NM 0930 9832].
|-
|  | 5.
|  | Basalt inclined sheet cutting gabbro, midway between Mullach Bi and the Cambir, Hirta [NM 0780 0012].
|-
|  | 6.
|  | Basalt inclined sheet cutting gabbro, about 250 m south of the Cambir neck, Hirta [NM 0780 0035].
|-
|  | 7.
|  | Basalt inclined sheet cutting gabbro, granite and earlier minor intrusions, Leacan an Eitheir, Glen Bay, Hirta [NM 0855 0035].
|-
|  | 8.
|  | Basalt inclined sheet cutting granite, eastern cliffs of Oiseval, Hirta (Cockburn, 1935).
|-
|  | 9.
|  | Basalt dyke cutting gabbro and a thin acidic dyke, Ruaival, Hirta [NM 0948 9795].
|-
|  | 10.
|  | Basalt dyke cutting granite but cut by late inclined sheet ''(compare with ''analysis 7), Leacan an Eitheir, Glen Bay, Hirta [NM 0855 0035].
|-
|  | 11.
|  | Basalt dyke cutting granite but cut by late inclined sheet, Leacan an Eitheir, Glen Bay, Hirta [NM 0855 0035].
|-
|  | 12.
|  | Basalt dyke cutting granite, Glen Bay, Hirta [NM 0840 0030].
|-
|  | 13.
|  | Basaltic margin of 2 m composite dyke cutting Mullach Sgar Complex, Na h-Eagan, Hirta [NM 0937 9830].
|-
|  | 14.
|  | Feldspar porphyry central part of 2 m composite dyke cutting Mullach Sgar Complex, Na h-Eagan, Hirta [NM 0937 9830] ''(compare with ''Cockburn, 1935, p. 542 devitrified porphyritic pitchstone).
|-
|  | 15.
|  | Basaltic margin to composite dyke cutting granophyre, west side of Glen Bay, Hirta [NM 0836 0032].
|-
|  | 16.
|  | Microgranitic central part of composite dyke cutting granite, west side of Glen Bay, Hirta [NM 0836 0032].
|-
|}
Post magmatic alteration of the minor intrusions is indicated by high Fe<sub>2</sub>O<sub>3</sub>:FeO ratios. This is consistent with the presence of abundant hydrous minerals, zeolites, calcite and epidote in some rocks and suggest that there has been considerable local hydrothermal alteration.
{| class="wikitable"
|-
|  | Wt%
|  | 1
|  | 2
|  | 3
|  | 4
|  | 5
|  | 6
|  | 7
|  | 8
|  | 9
|  | 10
|  | 11
|  | 12
|  | 13
|  | 14
|  | 15
|  | 16
|-
|| SiO<sub>2</sub>
|  | 46.91
|  | 49.46
|  | 46.18
|  | 51.25
|  | 49.71
|  | 46.97
|  | 47.12
|  | 46.80
|  | 47.25
|  | 49.94
|  | 49.21
|  | 47.32
|  | 48.16
|  | 72.38
|  | 51.69
|  | 72.06
|-
|| TiO<sub>2</sub>
|  | 2.15
|  | 1.98
|  | 1.40
|  | 1.87
|  | 1.21
|  | 2.13
|  | 1.88
|  | 1.85
|  | 1.81
|  | 1.87
|  | 1.45
|  | 1.47
|  | 1.37
|  | 0.25
|  | 1.63
|  | 0.37
|-
|| A1<sub>2</sub>O<sub>3</sub>
|  | 14.62
|  | 16.21
|  | 16.12
|  | 13.92
|  | 15.16
|  | 14.19
|  | 14.80
|  | 17.35
|  | 14.16
|  | 13.51
|  | 14.68
|  | 14.83
|  | 14.98
|  | 13.69
|  | 14.35
|  | 13.47
|-
|| Fe<sub>2</sub>O<sub>3</sub>
|  | 6.80
|  | 6.28
|  | 5.33
|  | 5.61
|  | 5.29
|  | 7.39
|  | 6.53
|  | 4.28
|  | 7.22
|  | 4.62
|  | 4.84
|  | 5.47
|  | 6.16
|  | 1.82
|  | 4.06
|  | 1.75
|-
|  | FeO
|  | 7.86
|  | 5.76
|  | 6.82
|  | 7.60
|  | 6.31
|  | 7.57
|  | 6.83
|  | 7.33
|  | 7.47
|  | 9.29
|  | 7.55
|  | 7.25
|  | 5.25
|  | 0.76
|  | 7.60
|  | 1.17
|-
|  | MnO
|  | 0.20
|  | 0.19
|  | 0.17
|  | 0.19
|  | 0.18
|  | 0.19
|  | 0.15
|  | 0.23
|  | 0.19
|  | 0.18
|  | 0.18
|  | 0.19
|  | 0.25
|  | 0.04
|  | 0.16
|  | 0.04
|-
|  | MgO
|  | 6.66
|  | 5.75
|  | 7.93
|  | 4.52
|  | 7.35
|  | 6.90
|  | 6.54
|  | 4.60
|  | 6.68
|  | 5.43
|  | 6.92
|  | 7.58
|  | 6.81
|  | 0.42
|  | 5.69
|  | 0.55
|-
|  | CaO
|  | 9.43
|  | 8.14
|  | 9.65
|  | 7.73
|  | 10.19
|  | 10.63
|  | 10.93
|  | 10.20
|  | 10.04
|  | 8.63
|  | 9.57
|  | 9.96
|  | 10.68
|  | 0.66
|  | 8.86
|  | 0.60
|-
|| Na<sub>2</sub>O
|  | 2.54
|  | 3.02
|  | 2.28
|  | 3.64
|  | 2.47
|  | 2.11
|  | 3.55
|  | 3.40
|  | 3.23
|  | 3.26
|  | 2.70
|  | 2.53
|  | 2.93
|  | 5.04
|  | 2.76
|  | 4.97
|-
|| K<sub>2</sub>O
|  | 0.42
|  | 0.95
|  | 0.33
|  | 1.14
|  | 0.44
|  | 0.16
|  | 0.24
|  | 0.60
|  | 0.36
|  | 0.49
|  | 0.39
|  | 0.33
|  | 0.62
|  | 3.77
|  | 0.71
|  | 4.06
|-
|| P<sub>2</sub>O<sub>5</sub>
|  | 0.22
|  | 0.27
|  | 0.15
|  | 0.28
|  | 0.14
|  | 0.18
|  | 0.17
|  | 0.17
|  | 0.17
|  | 0.17
|  | 0.14
|  | 0.17
|  | 0.12
|  | 0.03
|  | 0.19
|  | 0.06
|-
|| H<sub>2</sub>O<sup>+</sup>
|  | 1.28
|  | 1.84
|  | 2.70
|  | 1.91
|  | 2.10
|  | 2.07
|  | 1.71
|  | 1.80
|  | 1.84
|  | 1.51
|  | 2.27
|  | 1.87
|  | 2.02
|  | 0.32
|  | 1.26
|  | 0.57
|-
|| CO<sub>2</sub>
|  | 0.02
|  | 0.21
|  | 0.11
|  | 0.14
|  | 0.09
|  | 0.29
|  | 0.26
|  | n.r.
|  | 0.07
|  | 0.10
|  | 0.12
|  | 0.18
|  | 0.22
|  | 0.05
|  | 0.09
|  | <0.02
|-
|  | ''Total''
|  | 100.14
|  | 100.83
|  | 99.15
|  | 99.81
|  | 100.63
|  | 100.80
|  | 100.71
|  | 100.01*
|  | 100.47
|  | 99.00
|  | 100.03
|  | 99.16
|  | 99.57
|  | 99.23
|  | 99.06
|  | 99.67
|-
|  | p.p.m
|  | 1
|  | 2
|  | 3
|  | 4
|  | 5
|  | 6
|  | 7
|  | 8
|  | 9
|  | 10
|  | 11
|  | 12
|  | 13
|  | 14
|  | 15
|  | 16
|-
|  | Ba
|  | 224
|  | 375
|  | 111
|  | 331
|  | 175
|  | 113
|  | 347
|  |
|  | 203
|  | 260
|  | 167
|  | 152
|  | 220
|  | 1019
|  | 244
|  | 944
|-
|  | Ce
|  | 43
|  | 53
|  | 36
|  | 50
|  | 25
|  | 38
|  | 59
|  |
|  | 23
|  | 31
|  | 33
|  | 33
|  | 49
|  | 98
|  | 48
|  | 109
|-
|  | Co
|  | 60
|  | 50
|  | 69
|  | 44
|  | 63
|  | 59
|  | 48
|  |
|  | 55
|  | 47
|  | 53
|  | 55
|  | 55
|  | 2
|  | 55
|  | 2
|-
|  | Cr
|  | 81
|  | 40
|  | 73
|  | 74
|  | 154
|  | 91
|  | 98
|  |
|  | 141
|  | 46
|  | 125
|  | 151
|  | 170
|  | 17
|  | 114
|  |
|-
|  | Cu
|  | 53
|  | 43
|  | 78
|  | 44
|  | 137
|  | 74
|  | 98
|  |
|  | 31
|  | 38
|  | 60
|  | 84
|  | 111
|  | 19
|  | 54
|  | 15
|-
|  | Ga
|  | 25
|  | 22
|  | 29
|  | 37
|  | 19
|  | 30
|  | 33
|  |
|  | 24
|  | 31
|  | 30
|  | 20
|  | 25
|  | 25
|  | 18
|  | 22
|-
|  | La
|  | 11
|  | 20
|  | 4
|  | 12
|  | 7
|  | 5
|  | 21
|  |
|  | 3
|  | 12
|  | 8
|  | 6
|  | 16
|  | 53
|  | 17
|  | 49
|-
|  | Nb
|  | 13
|  | 18
|  | 9
|  | 10
|  | 7
|  | 10
|  | 15
|  |
|  | 8
|  | 7
|  | 11
|  | 8
|  | 10
|  | 18
|  | 13
|  | 26
|-
|  | Ni
|  | 51
|  | 50
|  | 98
|  | 25
|  | 89
|  | 49
|  | 52
|  |
|  | 52
|  | 35
|  | 62
|  | 78
|  | 80
|  | 1
|  | 50
|  | 3
|-
|  | Pb
|  | 3
|  | 2
|  | 0
|  | 4
|  | 5
|  | 0
|  | 5
|  |
|  | 2
|  | 3
|  | 6
|  | 6
|  | 4
|  | 13
|  | 12
|  | 22
|-
|  | Rb
|  | 12
|  | 17
|  | 11
|  | 65
|  | 8
|  | 3
|  | '''16'''
|  |
|  | 5
|  | 11
|  | 11
|  | 9
|  | 20
|  | 87
|  | 20
|  | 71
|-
|  | Sr
|  | 309
|  | 470
|  | 248
|  | 253
|  | 189
|  | 221
|  | 240
|  |
|  | 274
|  | 274
|  | 204
|  | 266
|  | 199
|  | 63
|  | 254
|  | 74
|-
|  | Y
|  | 31
|  | 25
|  | 23
|  | 34
|  | 33
|  | 32
|  | 61
|  |
|  | 29
|  | 34
|  | 28
|  | 25
|  | 36
|  | 51
|  | 30
|  | 60
|-
|  | Zn
|  | 98
|  | 78
|  | 63
|  | 114
|  | 77
|  | 81
|  | 93
|  |
|  | 91
|  | 123
|  | 89
|  | 96
|  | 65
|  | 57
|  | 104
|  | 55
|-
|  | Zr
|  | 141
|  | 171
|  | 104
|  | 173
|  | 133
|  | 127
|  | 228
|  |
|  | 108
|  | 127
|  | 124
|  | 102
|  | 135
|  | 427
|  | 155
|  | 527
|-
| colspan="17" | * <nowiki>*includes H</nowiki><sub>2</sub>O<sup>-</sup>
* n.r. not reported
* Note: XRF''' '''analyses by C. M. Farrow.
|-
|}


== [[St. Kilda: an illustrated account of the geology#References|References]] ==
== [[St. Kilda: an illustrated account of the geology#References|References]] ==
{{EGwalks}}
{{EGwalks}}
[[Category: 2. Northern Highlands]]
[[Category: 2. Northern Highlands]]

Revision as of 21:05, 5 November 2019

From: Harding, R.R. and Nancarrow, P.H.A. 1984. St. Kilda: an illustrated account of the geology. BGS Report Vol. 16, No. 7. Keyworth: British Geological Survey.].
Figure 28 TiO2–K2O–P2O5 diagram showing range in K2O values at relatively constant Ti:P ratios. Broken line denotes closed system fractionation at Skaergaard (Thompson, 1982a). Solid circles are basalts and basaltic andesites; open circles are microgranite and porphyritic pitchstone
Figure 29 Normative nepheline-olivine-diopside-hypersthene-quartz diagram with values for St Kilda rocks (circles), non-porphyritic central magmas in other Tertiary centres (triangles), Blackstones rocks (stars), and the indicated fields for Skye Main Lava Series (SMLS), Mull Plateau Group (MPG) and Preshal Mhor Basalts (PMB). Fractionation trends at low and high pressure are shown (based on Thompson, 1982a).
Table 29 Analyses of inclined sheets and dykes from Hirta, and Dun, St Kilda.

Chapter 16 Minor intrusions. Geochemistry

Keywords: chemical analysis, magma mixing and differentiation

Chemical analyses of 24 minor intrusive rocks from St Kilda were carried out; 16, representing the range, are given in (Table 29). A chemical classification of the rocks is based on the scheme of Irvine and Baragar (1971) and uses normative values recalculated after the manner of Thompson and others (1972) in which the values for Fe2O3 are adjusted to 1.5% or 2% depending on the alkali content of the rock. This scheme shows that a range of basaltic compositions is present, with most being classified as olivine + hypersthene normative tholeiites and only a small number being quartz normative. Only a few sheets are strongly quartz normative basaltic andesite, although one cuts the Mullach Sgar Complex at the northern end of Na h-Eagan [NM 0937 9850], and is comparable with some mafic pillows (Phase 3) within the Mullach Sgar Complex itself. The composition of the inclined sheet is probably a mixture of basaltic magma and granitic or sedimentary material as a partially resorbed quartz xenocryst can be seen in thin section. Cockburn (1935) recorded partially resorbed quartz crystals in another inclined sheet below Mullach Bi (Figure 27B). Some olivine + hypersthene normative basalts fall in the alkaline field of a Ne′Ol′Q′ triangular diagram (Irvine and Baragar, 1971) and the compositions of two late sheets are nepheline normative. The analysis of one marked R in (Figure 24B), is given in (Table 29), col. 7, and the other, which cuts the granite on Oiseval, appears in col. 8.

The range of normative values is shown in (Figure 29), and this distribution of the compositions is consistent with that of a series of rocks which have undergone fractionation at low pressure, suggesting that the St Kilda rocks were derived from a high level magma chamber. These were possibly developed within the continental basement since crustal contamination of the basalts can be demonstrated on a TiO2Template:Anchor –K2O–P2O5 diagram (Figure 28). The St Kildan basalts become increasingly potassic at a fairly constant ratio of Ti:P and follow a similar trend to basalts from Ardnamurchan which only differ in lying closer to the P2O5 apex. Thompson (1982a) has demonstrated that such enrichment in potash in the Ardnamurchan cone sheets cannot be due to closed system fractionation and is therefore due to contamination by sialic crust. However two rocks, one from a sheet cutting gabbro at Ruaival, the other from a sheet cutting gabbro at An Fhaing, Dun, are enriched in phosphorus and lie close to the trend for closed system fractionation. High values for other trace elements in these two rocks with corresponding low values for Ni and Cr are a further indication that fractionation has occurred. Geochemically the basic minor intrusives are similar to basalts from other Tertiary centres in that they possess low trace element abundances relative to typical continental tholeiitic rocks, but differ in respect of the proportions of these trace elements. In addition to differences in Ti–K–P proportions noted above, the St Kildan rocks have higher yttrium : zirconium ratios (0.15–0.27) than most basalts in the British Tertiary Volcanic Province, these ratios being exceeded only in sheets cutting the submarine Blackstones igneous complex WSW of Mull (Durant, unpublished data).

Analyses of both basic and acid components of two composite dykes are given in columns 13–16 of (Table 29). In both intrusions the outer part is basaltic and the inner is granitic. Both granitic components differ petrographically but have a similar SiO2 content of 72%, which, along' with Ca, Mg and Fe values, lies between those for the Glen Bay Granite (69%) and the Conachair Granite (76%).

= Analysed rocks =


1. Basalt inclined sheet, cutting gabbro about 150 m southeast of Bioda Mor, Dun [NM 1060 9728].
2. Basalt inclined sheet, cutting gabbro, upper one of three, An Fhaing, Dun [NM 1005 9758].
3. Basalt inclined sheet cutting Mullach Sgar Complex, Na h-Eagan, Hirta [NM 0940 9840].
4. Basalt inclined sheet cutting Mullach Sgar Complex, Na h-Eagan, Hirta [NM 0930 9832].
5. Basalt inclined sheet cutting gabbro, midway between Mullach Bi and the Cambir, Hirta [NM 0780 0012].
6. Basalt inclined sheet cutting gabbro, about 250 m south of the Cambir neck, Hirta [NM 0780 0035].
7. Basalt inclined sheet cutting gabbro, granite and earlier minor intrusions, Leacan an Eitheir, Glen Bay, Hirta [NM 0855 0035].
8. Basalt inclined sheet cutting granite, eastern cliffs of Oiseval, Hirta (Cockburn, 1935).
9. Basalt dyke cutting gabbro and a thin acidic dyke, Ruaival, Hirta [NM 0948 9795].
10. Basalt dyke cutting granite but cut by late inclined sheet (compare with analysis 7), Leacan an Eitheir, Glen Bay, Hirta [NM 0855 0035].
11. Basalt dyke cutting granite but cut by late inclined sheet, Leacan an Eitheir, Glen Bay, Hirta [NM 0855 0035].
12. Basalt dyke cutting granite, Glen Bay, Hirta [NM 0840 0030].
13. Basaltic margin of 2 m composite dyke cutting Mullach Sgar Complex, Na h-Eagan, Hirta [NM 0937 9830].
14. Feldspar porphyry central part of 2 m composite dyke cutting Mullach Sgar Complex, Na h-Eagan, Hirta [NM 0937 9830] (compare with Cockburn, 1935, p. 542 devitrified porphyritic pitchstone).
15. Basaltic margin to composite dyke cutting granophyre, west side of Glen Bay, Hirta [NM 0836 0032].
16. Microgranitic central part of composite dyke cutting granite, west side of Glen Bay, Hirta [NM 0836 0032].

Post magmatic alteration of the minor intrusions is indicated by high Fe2O3:FeO ratios. This is consistent with the presence of abundant hydrous minerals, zeolites, calcite and epidote in some rocks and suggest that there has been considerable local hydrothermal alteration.


Wt% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SiO2 46.91 49.46 46.18 51.25 49.71 46.97 47.12 46.80 47.25 49.94 49.21 47.32 48.16 72.38 51.69 72.06
TiO2 2.15 1.98 1.40 1.87 1.21 2.13 1.88 1.85 1.81 1.87 1.45 1.47 1.37 0.25 1.63 0.37
A12O3 14.62 16.21 16.12 13.92 15.16 14.19 14.80 17.35 14.16 13.51 14.68 14.83 14.98 13.69 14.35 13.47
Fe2O3 6.80 6.28 5.33 5.61 5.29 7.39 6.53 4.28 7.22 4.62 4.84 5.47 6.16 1.82 4.06 1.75
FeO 7.86 5.76 6.82 7.60 6.31 7.57 6.83 7.33 7.47 9.29 7.55 7.25 5.25 0.76 7.60 1.17
MnO 0.20 0.19 0.17 0.19 0.18 0.19 0.15 0.23 0.19 0.18 0.18 0.19 0.25 0.04 0.16 0.04
MgO 6.66 5.75 7.93 4.52 7.35 6.90 6.54 4.60 6.68 5.43 6.92 7.58 6.81 0.42 5.69 0.55
CaO 9.43 8.14 9.65 7.73 10.19 10.63 10.93 10.20 10.04 8.63 9.57 9.96 10.68 0.66 8.86 0.60
Na2O 2.54 3.02 2.28 3.64 2.47 2.11 3.55 3.40 3.23 3.26 2.70 2.53 2.93 5.04 2.76 4.97
K2O 0.42 0.95 0.33 1.14 0.44 0.16 0.24 0.60 0.36 0.49 0.39 0.33 0.62 3.77 0.71 4.06
P2O5 0.22 0.27 0.15 0.28 0.14 0.18 0.17 0.17 0.17 0.17 0.14 0.17 0.12 0.03 0.19 0.06
H2O+ 1.28 1.84 2.70 1.91 2.10 2.07 1.71 1.80 1.84 1.51 2.27 1.87 2.02 0.32 1.26 0.57
CO2 0.02 0.21 0.11 0.14 0.09 0.29 0.26 n.r. 0.07 0.10 0.12 0.18 0.22 0.05 0.09 <0.02
Total 100.14 100.83 99.15 99.81 100.63 100.80 100.71 100.01* 100.47 99.00 100.03 99.16 99.57 99.23 99.06 99.67
p.p.m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ba 224 375 111 331 175 113 347 203 260 167 152 220 1019 244 944
Ce 43 53 36 50 25 38 59 23 31 33 33 49 98 48 109
Co 60 50 69 44 63 59 48 55 47 53 55 55 2 55 2
Cr 81 40 73 74 154 91 98 141 46 125 151 170 17 114
Cu 53 43 78 44 137 74 98 31 38 60 84 111 19 54 15
Ga 25 22 29 37 19 30 33 24 31 30 20 25 25 18 22
La 11 20 4 12 7 5 21 3 12 8 6 16 53 17 49
Nb 13 18 9 10 7 10 15 8 7 11 8 10 18 13 26
Ni 51 50 98 25 89 49 52 52 35 62 78 80 1 50 3
Pb 3 2 0 4 5 0 5 2 3 6 6 4 13 12 22
Rb 12 17 11 65 8 3 16 5 11 11 9 20 87 20 71
Sr 309 470 248 253 189 221 240 274 274 204 266 199 63 254 74
Y 31 25 23 34 33 32 61 29 34 28 25 36 51 30 60
Zn 98 78 63 114 77 81 93 91 123 89 96 65 57 104 55
Zr 141 171 104 173 133 127 228 108 127 124 102 135 427 155 527
* *includes H2O-
  • n.r. not reported
  • Note: XRF analyses by C. M. Farrow.

References

At all times follow: The Scottish Access Codeand Code of conduct for geological field work